

Non-perturbative aspects of generators for eA

Department of Astronomy and Theoretical Physics Lund University

MC4EIC, 2021-11-18

Outline

- ▶ DIS and the dipole picture
- Glauber calculations
- Collective effects
- Plans for PYTHIA8

Why General Purpose Event Generators

(only three GPEGs: Herwig7, Pythia8, Sherpa)

We need event generators to model our data, but also to model the theory.

It's not enough to tune for one analysis/experiment, we need to tune to everything.

- $e^+e^- \Rightarrow$ Hadronisation and FSR
- ▶ ep ⇒ ISR and remnant jets.
- ▶ pp ⇒ UE and MPI
- pA ⇒ small dense systems, flow
- AA ⇒ large dense systems, jet quenching
- ► e*A* ⇒ ?

We need to understand what exactly we are measuring.

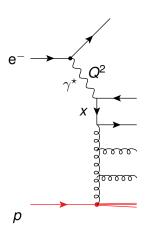
- ► eA?
- ▶ DIS?
- Photo-production?
- Nuclei in general?
- ▶ Saturation? Polarisation? Lower energy? Diffraction? . . .

- ► eA?
- ▶ DIS?
- Photo-production?
- ▶ Nuclei in general?
- ▶ Saturation? Polarisation? Lower energy? Diffraction? . . .

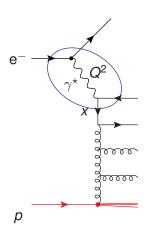
- ► eA?
- ▶ DIS?
- Photo-production?
- ▶ Nuclei in general?
- ▶ Saturation? Polarisation? Lower energy? Diffraction? . . .

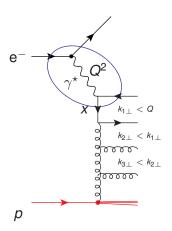
- ► eA?
- ▶ DIS?
- Photo-production?
- Nuclei in general?
- ▶ Saturation? Polarisation? Lower energy? Diffraction? . . .

- ► eA?
- ▶ DIS?
- Photo-production?
- Nuclei in general?
- ▶ Saturation? Polarisation? Lower energy? Diffraction? . . .

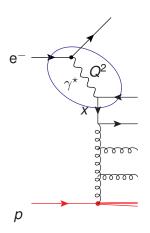

- ► eA?
- ► DIS?
- Photo-production?
- Nuclei in general?
- ► Saturation? Polarisation? Lower energy? Diffraction? . .

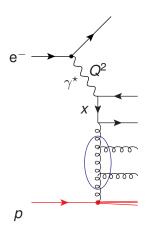
- ► eA?
- ► DIS?
- Photo-production?
- Nuclei in general?
- Saturation? Polarisation? Lower energy? Diffraction? . . .

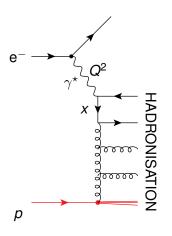

Todo: EVERYTHING

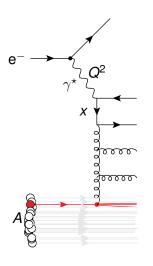


- ► The Primary (hardest) vertex.
- Standard showers orders in $k \perp$
- And allows the scattered electron to take recoil. x, Q² not preserved in shower.
- No natural transition to photo-production for small Q².
- ▶ If we can do ep we can do eA

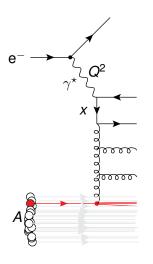


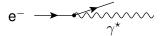

- ► The Primary (hardest) vertex.
- Standard showers orders in $k \perp$
- And allows the scattered electron to take recoil. x, Q² not preserved in shower.
- No natural transition to photo-production for small Q².
- ▶ If we can do ep we can do eA


- ► The Primary (hardest) vertex.
- ▶ Standard showers orders in $k \perp$
- And allows the scattered electron to take recoil. x, Q² not preserved in shower.
- No natural transition to photo-production for small Q².
- ▶ If we can do ep we can do eA

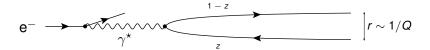

- ► The Primary (hardest) vertex.
- ▶ Standard showers orders in $k \perp$
- And allows the scattered electron to take recoil. x, Q² not preserved in shower.
- No natural transition to photo-production for small Q².
- ▶ If we can do ep we can do eA

- ► The Primary (hardest) vertex
- Standard showers orders in $k \perp$
- And allows the scattered electron to take recoil. x, Q² not preserved in shower.
- No natural transition to photo-production for small Q².
- ▶ If we can do ep we can do eA

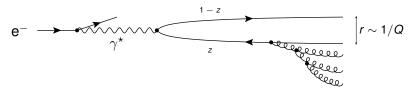

- ► The Primary (hardest) vertex.
- \triangleright Standard showers orders in $k\perp$
- And allows the scattered electron to take recoil. x, Q² not preserved in shower.
- No natural transition to photo-production for small Q².
- If we can do ep we can do eA

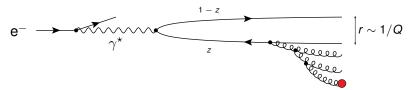

- ► The Primary (hardest) vertex
- Standard showers orders in $k \perp$
- And allows the scattered electron to take recoil. x, Q² not preserved in shower.
- No natural transition to photo-production for small Q².

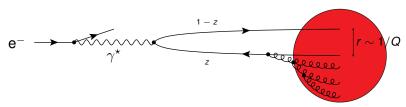
▶ If we can do ep we can do eA

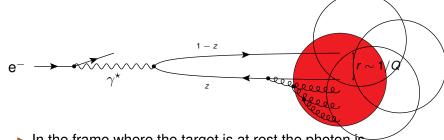


- ► The Primary (hardest) vertex
- ▶ Standard showers orders in $k \perp$
- And allows the scattered electron to take recoil. x, Q² not preserved in shower.
- No natural transition to photo-production for small Q².
- If we can do ep we can do eA?


- ► In the frame where the target is at rest the photon is emitted long before the ineraction.
- Also the photon splits up long before the interacton
- ...and radiates
- ... before hitting the target
- Hitting another nucleon comes at little extra cost.


- ▶ In the frame where the target is at rest the photon is emitted long before the ineraction.
- Also the photon splits up long before the interacton
- ...and radiates
- ...before hitting the target
- Hitting another nucleon comes at little extra cost


- ▶ In the frame where the target is at rest the photon is emitted long before the ineraction.
- Also the photon splits up long before the interacton
- ... and radiates
- ...before hitting the target
- Hitting another nucleon comes at little extra cost.


- ▶ In the frame where the target is at rest the photon is emitted long before the ineraction.
- Also the photon splits up long before the interacton
- ... and radiates
- ...before hitting the target.
- Hitting another nucleon comes at little extra cost.

- ▶ In the frame where the target is at rest the photon is emitted long before the ineraction.
- Also the photon splits up long before the interacton
- ...and radiates
- ...before hitting the target.
- Hitting another nucleon comes at little extra cost

- In the frame where the target is at rest the photon is emitted long before the ineraction.
- Also the photon splits up long before the interacton
- ... and radiates
- ...before hitting the target.
- Hitting another nucleon comes at little extra cost.

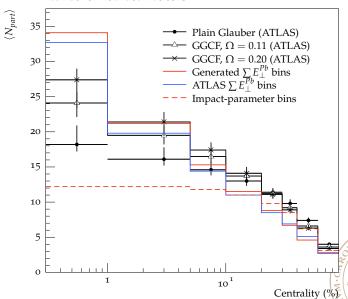
Glauber Calculations

To get a reasonable handle on hadronic final states in eA we need to add together several eN collisions, and for that we need to do some kind of Glauber calculation to obtain N_{part} (or $N_{wounded}$)

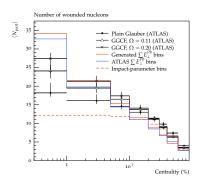
Also, if we want to do R_{AA} -like measurements, we need to understand how many nucleons we hit.

The Glauber calculation needs to use the dipole-nucleon cross section.

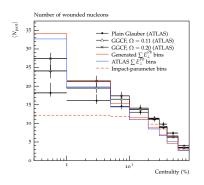
Glauber Calculations

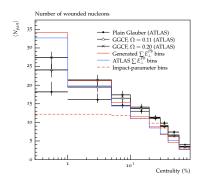

To get a reasonable handle on hadronic final states in eA we need to add together several eN collisions, and for that we need to do some kind of Glauber calculation to obtain N_{part} (or $N_{wounded}$)

Also, if we want to do R_{AA} -like measurements, we need to understand how many nucleons we hit.


The Glauber calculation needs to use the dipole-nucleon cross section.

The lesson from pA collisions at the LHC is that we need to worry about fluctuations.


Number of wounded nucleons


For low Q^2 eA we expect Vector Meson Dominance and the situation looks like pA.

For low Q^2 eA we expect Vector Meson Dominance and the situation looks like pA.

For high Q^2 we expect even more fluctuations. And we need to generate DIS in terms of dipole—nucleon scattering.

For low Q^2 eA we expect Vector Meson Dominance and the situation looks like pA.

For high Q^2 we expect even more fluctuations. And we need to generate DIS in terms of dipole—nucleon scattering.

We believe that we know how to model the non-perturbative hadronisation process. But there are caveats.

- $ightharpoonup \sqrt{S_{eN}} = 100$ GeV, sounds like LEP energies But hadronic system has lower mass and a lots of energy goes into the nucleon remnant (largely ignored by GPEGs).
- How well does string fragmentation describe a small number of hadrons? Cluster fragmentation?
- ▶ How well do we model intrinsic k_{\perp} ?

We believe that we know how to model the non-perturbative hadronisation process. But there are caveats.

- $ightharpoonup \sqrt{S_{eN}}=$ 100 GeV, sounds like LEP energies But hadronic system has lower mass and a lots of energy goes into the nucleon remnant (largely ignored by GPEGs).
- How well does string fragmentation describe a small number of hadrons? Cluster fragmentation?
- ▶ How well do we model intrinsic k_{\perp} ?

We believe that we know how to model the non-perturbative hadronisation process. But there are caveats.

- $\sqrt{S_{eN}}=$ 100 GeV, sounds like LEP energies But hadronic system has lower mass and a lots of energy goes into the nucleon remnant (largely ignored by GPEGs).
- ► How well does string fragmentation describe a small number of hadrons? Cluster fragmentation?
- ▶ How well do we model intrinsic k_{\perp} ?

We believe that we know how to model the non-perturbative hadronisation process. But there are caveats.

- $\sqrt{S_{eN}}=$ 100 GeV, sounds like LEP energies But hadronic system has lower mass and a lots of energy goes into the nucleon remnant (largely ignored by GPEGs).
- ► How well does string fragmentation describe a small number of hadrons? Cluster fragmentation?
- ▶ How well do we model intrinsic k_{\perp} ?

Collective Effects

Can we just stack dipole–nucleon events together, or do we need to worry about collective effects?

Collective Effects

Can we just stack dipole—nucleon events together, or do we need to worry about collective effects?

Do we need to model a droplet of Quark-Gluon Plasma?

Collective Effects

Can we just stack dipole—nucleon events together, or do we need to worry about collective effects?

Do we need to model a droplet of Quark-Gluon Plasma?

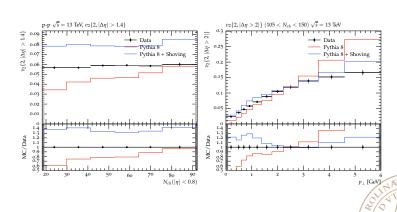
Since there are collective effects even in pp, we need to be able to model them at the EIC!

- Colour reconnections (swing)
- String repulsion (shoving)
- Increased string tension (ropes)
- Hadron rescattering

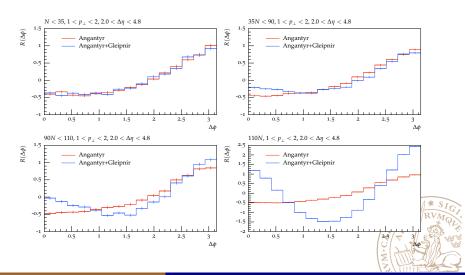
- Colour reconnections (swing)
 Affects jet shapes and mutliplicity
- String repulsion (shoving)
- Increased string tension (ropes)
- Hadron rescattering

- Colour reconnections (swing)
 Affects jet shapes and mutliplicity
- String repulsion (shoving)Gives flow
- Increased string tension (ropes)
- Hadron rescattering

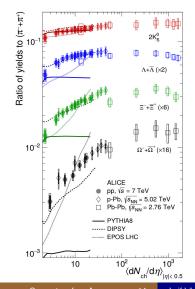
- Colour reconnections (swing)
 Affects jet shapes and mutliplicity
- String repulsion (shoving)Gives flow
- Increased string tension (ropes)
 Gives strangeness enhancement
- Hadron rescattering



- Colour reconnections (swing)
 Affects jet shapes and mutliplicity
- String repulsion (shoving)Gives flow
- Increased string tension (ropes)
 Gives strangeness enhancement
- Hadron rescattering More flow



Shoving (pp)



Shoving (pPb)

Ropes

Nature Phys. 13 (2017) 535-539

- eA (Dipole-nucleon scatterings) in Angantyr [talk this afternoon]
- Swind
- Shoving
- Ropes
- Hadronic rescattering
- Nuclear PDFs
- Photon PDFs
- Polarised string fragmentation (w. Albi Kerbizi)
- ► TMD-based shower (w. Mees van Kampen)

- eA (Dipole-nucleon scatterings) in Angantyr [talk this afternoon]
- Swing
- Shoving
- Ropes
- Hadronic rescattering
- Nuclear PDFs
- Photon PDFs
- Polarised string fragmentation (w. Albi Kerbizi)
- ► TMD-based shower (w. Mees van Kampen)

- eA (Dipole-nucleon scatterings) in Angantyr [talk this afternoon]
- Swing
- Shoving
- Ropes
- Hadronic rescattering
- Nuclear PDFs
- Photon PDFs
- Polarised string fragmentation (w. Albi Kerbizi)
- TMD-based shower (w. Mees van Kampen)

- eA (Dipole-nucleon scatterings) in Angantyr [talk this afternoon]
- Swing
- Shoving
- Ropes
- Hadronic rescattering
- Nuclear PDFs
- Photon PDFs
- Polarised string fragmentation (w. Albi Kerbizi)
- TMD-based shower (w. Mees van Kampen)

- eA (Dipole-nucleon scatterings) in Angantyr [talk this afternoon]
- Swing
- Shoving
- Ropes
- Hadronic rescattering
- Nuclear PDFs
- Photon PDFs
- Polarised string fragmentation (w. Albi Kerbizi)
- TMD-based shower (w. Mees van Kampen)

The Conlusion

General Purpose Event Generators are not ready for EIC.

The Conlusion

General Purpose Event Generators are not ready for EIC. Yet.

The Conlusion

General Purpose Event Generators are not ready for EIC. Yet.

But there are at least PYTHIA8 authors that are willing to have a go at it.

Thanks!

